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Photochemical chlorocarbonylation of a series of cyclic and acyclic carbonyl compounds shows 
remarkable regioselectivity and gives 8- or y-substituted products in reasonable yields. Irradiation 
of cyclopentanone in oxalyl chloride followed by esterification with methanol gave methyl 
3-oxocyclopentanecarboxylate (4). Similarly, photochemical chlorocarbonylation of cyclobutanone 
yielded methyl 3-oxocyclobutanecarboxylate (6). Application of the chlorocarbonylation reaction 
to 3-pentanone gave methyl 4-oxohexanoate (8) and dimethyl 4-oxopimelate (9). When a mixture 
of 3-methylbutanoic acid and oxalyl chloride was irradiated, dimethyl 3-methylglutarate (1 1) was 
obtained after methanolysis. A kinetically-controlled mechanism for the photochemical process was 
deduced . 

Introduction 
The photo- or peroxide-induced homolysis of oxalyl 

chloride is a mild free-radical process that has been used 
to introduce the versatile chloroformyl group in hydro- 
carb0ns.l Radical chlorocarbonylation has been applied 
to adamantane,lb norbornane,lc and bicyclo l,l, 11 pen- 
tane.ld Because a number of reactive sites were present 
in these compounds, however, selectivities were generally 
low. We have recently explored the effect of electron- 
withdrawing groups, notably carboxy groups, on the 
regioselectivity of the chlorocarbonylation reaction and 
demonstrated its applicability in an efficient synthesis of 
the cage compound 1,3,5,7-tetrakis(chlorocarbonyl)cubane 
(2) from cubanecarboxylic acid (W2 
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The selectivity was provisionally interpreted in terms 
of an electron-withdrawing field effect of the carboxyl 
group resulting in retarded cleavage of the a-C-H bonds, 
leading to predominant chlorocarbonylation at  the 8 
positions. The present work further demonstrates the 
synthetic potential of chlorocarbonylation by extending 
it to other carbonyl compounds as a means of under- 
standing the regioselectivity of the sub~titution.~ 
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Results and Discussion 

In our study the chlorocarbonylation of cyclopentanone, 
cyclobutanone, 3-pentanone, and 3-methylbutanoic acid 
was investigated. Chlorocarbonylation of these reactants 
can give a number of easily identified isomeric substitution 
products. For example, a-chlorocarbonylation of cyclo- 
pentanone would yield, after methanolysis, commercially- 
available methyl 2-oxocyclopentanecarboxylate. Beta 
substitution would afford methyl 3-oxocyclopentane- 
carboxylate4* (4), an important agricultural intermediate'b 
which is difficult to prepare by other routes. Similarly, 
synthesis of the pharmaceutically important intermediate, 
methyl 3-oxocyclobutanecarbxylate~ (61, requires a mul- 
tistep process.sb 

Irradiation of cyclopentanone in oxalyl chloride for 24 
h, followed by esterification with methanol, gave methyl 
3-oxocyclopentanecarboxylate (4) in 60 5% yield.6 No 
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evidence for the formation of any a-substituted product 
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was observed? suggesting that the resonance stability of 
the a-radical does not play a decisive role in the regio- 
selectivity of this chlorocarbonylation. 

Similarly, photolysis of cyclobutanone in oxalyl chloride 
followed by esterification produced methyl 3-oxocyclo- 
butanecarboxylate (6) as the major product (50-60 7% ). In 
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this case, the reaction was much slower than with 
cyclopentanone, and after 24 h of irradiation, only 50% 
of the cyclobutanone was consumed.8 In addition to 
statistical factors (four /3 hydrogens in cyclopentanone 
compared to two in cyclobutanone), the slower reaction 
rate might be attributed to the increased C-H strength in 
the smaller four-membered ring compound compared to 
the five-membered cycl~pentanone.~ 

Application of the chlorocarbonylation reaction was 
extended to two acyclic ketones, 3-pentanone (7) and 
3-methylbutanoic acid (10). These compounds were 
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chosen due to the anticipated differences of the C-H bond 
reactivities within the molecules and ease of NMR 
characterization of the reaction products. Photochemical 
chlorocarbonylation of 7 with oxalyl chloride proceeded 
slowly at  room temperature, and after 24 h of irradiation 
and then methanolysis, the mono- and dicarbonylated 
products, methyl 4-oxohexanoate ($)lo and dimethyl 
4-oxopimelate (9),11 were obtained in 55% total yield in 
a ratio of 81 ,  respectively.12 

When a mixture of 10 and oxalyl chloride was irradiated 
at  room temperature for 24 h, substitution occurred at  the 
y-position resulting in the formation of dimethyl 3-me- 
thylglutarate (11)'s in 60% yield.14 Clearly, preferential 
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attack took place at  the least hindered methyl site and not 
a t  the /3 position, which would be expected to give rise to 
the more stabilized tertiary radical. Moreover, statistical 
considerations (six y-hydrogens to one /3 hydrogen) also 
favor substitution in the y-position. 

In free-radical substitution reactions with oxalyl chloride 
and related derivatives, it is commonly accepted that the 
overall process is initiated by the dissociation steps outlined 
in eq 1.1 

hv hv c1' + ' C O C O C 1 ~  (COCl), + 2coc1 (1) 

RH + 'COC1- R' + CO + HC1 (2) 

(3) R' + (COCl), - RCOCl + 'COC1 

Subsequent steps would likely involve abstraction of 
hydrogen from the substrate molecule by either a chlorine 
atom or a chlorocarbonyl radical (eq 2) followed by the 
chain-propagation step shown in eq 3. 

Our data suggest that electrophilic chlorocarbonyl 
(COCl) or chlorine (CP) radicals preferentially abstract a 
hydrogen from the least electron-deficient carbon atom 
distant from the carbonyl group. In the case of 3-meth- 
ylbutanoic acid, despite the familiar decrease in C-H bond 
strength from primary to secondary to tertiary,16 the 
substitution occurring at  the methyl group may also be 
reinforced by steric effects as well as statistical factors. 
Accordingly, a kinetically-controlled process for these 
reactions can be inferred. 

Conclusion 

Photochemical chlorocarbonylation of carbonyl com- 
pounds shows remarkable regioselectivity. This meth- 
odology introduces a chlorocarbonyl group at  a remote 
site (0 or y) and makes possible the efficient synthesis of 
compounds which are otherwise difficult to prepare. 

Experimental Section 

NMR spectra were recorded on a Bruker or G.E. 300-MHz 
spectrometer using CDCla as solvent. All chemical shifts are 
reported in ppm, downfield from internal tetramethyhilane. Mass 
spectra were measured on a Finnegan OWA 1020B. All the 
chemicals were purchased from Aldrich and used without further 
purification. 

General Procedure. A stirred solution of the carbonyl 
compound (10.0 mmol) in 50 mL of oxalyl chloride (Aldrich, 
98% ) in a quartz vessel was irradiated in a Rayonet photoreactor 
(1849-2537 A) at 35-40 OC. After the reaction was completed, 
excess oxalyl chloride was removed on a rotary evaporator, and 
the crude reaction product was treated with methanol. The 
resulting methyl esters were isolated by chromatography (Chro- 
matotron, silica gel) using EtOAc/hexane (1:3) as eluent. The 

(14) At  higher temperatures (50-60 OC) or prolonged reaction time, 
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identification and characterization of these compounds were 
achieved using a combination of NMR methods (DEPT, 
HETCORR, COLOC, RELAY), mass spectrometry, and where 
available, comparison with authentic samples and closely-related 
isomeric materials. The yields are based on recovered starting 
materials and not optimized. 

Methyl 3-oxocyclopentanecarboxylate ( 4 ) 9  lH NMR 
(CDCb) 6 3.73 (8,3H), 3.15 (m, lH), 2.13-2.47 (m, 6H); l3C NMR 
6 216.3 (a), 174.5 (a), 51.9 (q), 40.9 (t), 40.5 (d), 37.1 (t), 26.3 (t); 
LRMS (NHa, CI) calcd for C7H1003 160 (M + 18), 143 (M + 11, 
found 160,143. 

Methyl 3-oxocyclobutanecarboxylate (6 )9  'H NMR (CD- 
Ch) 6 3.70 (8,  3H), 3.19-3.37 (m, 5H); I9C NMR 6 203.7 (s), 174.4 
(s), 51.$(q), 51.5 (t), 27.1 (d); LRMS (NHa, CI) calcd for C a O 3  
146 (M + 18), 129 (M + l), found 146,129. 

Methyl 4-oxohexanoate (8):1° lH NMR (CDCb) 6 1.05 (t, 
3H), 2.52 (q, 2H), 2.61 (t, 2H), 2.73 (t, 2H), 3.68 (s,3H); NMR 
6 204.2 (s), 173.8 (a), 51.7 (q), 36.5 (t), 35.8 (t), 33.07 (t), 26.9 (9); 
MS (CI) 145 (M + l), 113,85,59. 
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Dimethyl 4-oxopimelate (9):" 1H NMR (CDCb) 6 2.58 (t, 
4H), 2.78 (t, 4H), 3.66 (8,6H); 13C NMR6 205.3 ( E ) ,  172.9 (a), 51.7 
(q), 36.8 (t), 27.6 (t); MS (CI) 203 (M + l), 171, 143, 84, 59. 

Dimethyl 3-methylglutarate (ll)." In thiscase the reaction 
mixture was stirred at room temperature for 30 min under slight 
vacuum prior to the irradiation: lH NMR (CDCb) 6 3.69 (8, 6H), 
2.2~2.50(m,5H),1.02(s,3H);13CNMR6172.6(s),51.3(q),40.5 
(t), 27.3 (d), 19.7 (9); LRMS (NHs, CI) calcd for C&O4 192 (M 
+ 18), 175 (M + 11, found 192, 175. 
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